A spatially weighted principal component analysis for multi-element geochemical data for mapping locations of felsic intrusions in the Gejiu mineral district of Yunnan, China

نویسندگان

  • Qiuming Cheng
  • Graeme Bonham-Carter
  • Wenlei Wang
  • Shengyuan Zhang
  • Wenchang Li
  • Xia Qinglin
چکیده

Principal component analysis (PCA) is frequently used in geosciences for information extraction. In many applications,masking PCA has been used to create subsets of samples or sub-areas to enhance the effect of themain objects of interest. In this paper we suggest how the representativeness of samples or pixels can be quantified using a fuzzy membership function based on fuzzy set theory. In this new method, the relative importance of pixels or samples can be taken into account using amultivariate statisticalmethod such as PCA. A FuzzyMasking PCA is proposed and implemented in GeoDAS GIS on the basis of a spatially weighted PCA (SWPCA). This paper introduces themathematical treatment of the fuzzymasking PCA and follows a case study of identifying the locations of intrusive bodies from geochemical data in the Gejiu mineral district in Yunnan, China. Power-law functions based on the inverse distance frommapped felsic intrusions are applied as weighting functions in FMPCA. The results indicate that fuzzy mask PCA increases the signal-noise ratio of the component representing igneous intrusions and decreases the influence of sedimentary rocks. The areas delineated as potential areas for new intrusions (including buried intrusions) are valuable guides for Sn mineral prospecting. & 2010 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Petrogenesis of the Lalezar granitoid intrusions (Kerman Province - Iran)

The Lalezar granitoids crop out within volcanic successions of the Urumieh-Dokhtar Magmatic Assemblage (UDMA). These granitoids have a range from gabbro-diorites to granites in composition. The mineral compositions of the most felsic rocks are characterized by the abundances of Na-plagioclase, quartz, alkali feldspar, biotite and hornblende. In the gabbro-diorite rocks, plagioclase (Ca-rich), h...

متن کامل

Detection of Mo geochemical anomaly in depth using a new scenario based on spectrum–area fractal analysis

Detection of deep and hidden mineralization using the surface geochemical data is a challenging subject in the mineral exploration. In this work, a novel scenario based on the spectrum–area fractal analysis (SAFA) and the principal component analysis (PCA) has been applied to distinguish and delineate the blind and deep Mo anomaly in the Dalli Cu–Au porphyry mineralization area. The Dalli miner...

متن کامل

A Critique on Power Spectrum – Area Fractal Method for Geochemical Anomaly Mapping

Power spectrum – area fractal (S-A fractal) method has been frequently applied for geochemical anomaly mapping. Some researchers have performed this method for separation of geochemical anomaly, background and noise and have delineated their distribution maps. In this research, surface geochemical data of Zafarghand Cu-Mo mineralization area have been utilized and some defects of S-A fractal me...

متن کامل

Comparison of various knowledge-driven and logistic-based mineral prospectivity methods to generate Cu and Au exploration targets Case study: Feyz-Abad area (North of Lut block, NE Iran)

Motivated by the recent successful results of using GIS modeling in a variety of problems related to the geosciences, some knowledge-based methods were applied to a regional scale mapping of the mineral potential, special for Cu-Au mineralization in the Feyz-Abad area located in the NE of Iran. Mineral Prospectivity Mapping (MPM) is a multi-step process that ranks a promising target area for mo...

متن کامل

Prediction of mineral deposit model and identification of mineralization trend in depth using frequency domain of surface geochemical data in Dalli Cu-Au porphyry deposit

In this research work, the frequency domain (FD) of surface geochemical data was analyzed to decompose the complex geochemical patterns related to different depths of the mineral deposit. In order to predict the variation in mineralization in the depth and identify the deep geochemical anomalies and blind mineralization using the surface geochemical data for the Dalli Cu-Au porphyry deposit, a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Geosciences

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2011